Tabel 1. Sum (rødt areal) - alder: 65, fødselsårgang: 1954 - 1959 | |||||||
---|---|---|---|---|---|---|---|
Fødested: Grønland | |||||||
Døde | Ind-vandring | Ud-vandring | Befolkning (primo) | Befolkning (ultimo) | Middelfolketal | Korrektioner | |
Total | 38 | 6 | 15 | 1,391 | 1,219 | 1,305.0 | −125 |
2020 | 8 | 1 | 1 | 235 | 199 | 217.0 | −28 |
2021 | 3 | 1 | 4 | 268 | 229 | 248.5 | −33 |
2022 | 10 | 1 | 4 | 277 | 254 | 265.5 | −10 |
2023 | 9 | 2 | 2 | 291 | 262 | 276.5 | −20 |
2024 | 8 | 1 | 4 | 320 | 275 | 297.5 | −34 |
Overlevelsestavler, Grønland
(opdateret den 11. april 2025)
Indledning
Det konsoliderede Befolkningsregnskab, opgøres for hele landet og for definerede geografiske inddelinger. Befolkningsregnskabets tabeller indeholder alle nødvendige oplysninger til at estimere befolkningens dødshyppigheder og mange afledte demografiske mål.
Da datagrundlaget således er offentligt og frit tilgængeligt, er formålet med denne beskrivelse, at gøre anvendte beregningsmetoder reproducerbare.
De demografiske hændelser i Befolkningsregnskabet kan fordeles efter fødselsårgang og kalenderår. Desuden anvendes i variabel, som angiver, om hændelsen i det enkelte kalenderår sker før eller efter årets fødselsdag. Med denne viden kan hændelserne opgøres i såkaldte Lexis elementar-trekanter, som muliggør dødelighedsberegninger, hvor hændelser valgfrit kan opgøres enten ud fra:
a-gruppe) Alder og kalenderår ved hændelse eller
b-gruppe) Fødselsårgang og kalenderår ved hændelse eller
c-gruppe) Alder og fødselsårgang ved hændelse
Når overlevelse beregnes for små befolkninger er datagrundlaget så spinkelt, at der er stor usikkerhed om de beregnede mål. Derfor beregnes overlevelse samlet for flere år. Beregninger for Grønland har traditionelt alene har været beregnet for 5 løbende kalenderår.
De store fødselsårgange i slutningen af 1960’erne, blev afløst af halvt så store fødselsårgange i begyndelsen af 1970’erne. Det har betydet at befolkningens aldersfordeling siden markant ændres med få års mellemrum.
5-års gennemsnit kan derfor let skjule udviklingstendenser i dødeligheden, hvorfor den dannede Statistikbank-tabel: BEDLTALL beregnes med både, 1, 2 og 5 års basis.
I den kode som danner dette dokument kan køn, alder og fødested samt beregningsperiode tilpasses, men som udgangspunkt, vises her beregning af dødelighed for : mænd, født i Grønland i 65-års alderen for 5-års perioden2020:2024
En aldersbetinget dødshyppighed angiver, hvor mange personer der dør fra én fødselsdag til den næste.
For at estimere de aldersbetingede dødshyppigheder beregnes først køns- og aldersbetingede dødskvotienter, som en given periodes antal dødsfald i forhold til risikobefolkningens gennemlevede tid.
Metoden svarer til den Danmarks Statistik anvendte tidligere og som fx er beskrevet i Befolkningens bevægelser, bilag 2, side 225
R-pakken MortalityLaws af Marius D. Pascariu med fuld dokumentation i hans phd fra 2018) anvendes til at beregne overlevelsestabeller.
Beregningsresultater gemmes i en px-fil, klar til at blive vist i Statistikbanken eller lokalt med Pxwin. Se den svenske Statistikmyndighed SCB for mere information.
PX-filen dannes med Grønlands Statistiks R-pakke pxmake (på CRAN). Se StatisticsGreenland.github.io/pxmake for mere info & kilde kode.
Beregningsmetoder
Traditionelt har det været lettest at finde statistiske tabeller, hvor antal dødsfald i et kalenderår har været fordelt efter køn og alder ved død. Sat i forhold til en årlig opgørelse af befolkningens køn- og aldersfordeling kan en overlevelsestavle med afledte dødelighedsmål estimeres.
Alder vil typisk være opgjort på 1 eller 5 år intervaller og hver alder vil bestå af oplysninger flere fødselsårgange, og der ses en relativ stor korrektionspost i Befolkningsregnskabet.
Disse a-grupper vil være retvisende for store befolkninger, hvor der er lille forskel på fødselsårgangenes størrelse og dødelighed.
For Grønland er der imidlertid meget stor forskel på fødselsårgangenes størrelse. Derfor beregnes dødelighed mere retvisende ved b-grupper (fødselsårgang), hvor korrektionsposten over en årrække går mod 0. Korrektioner er en følge af forsinkede indberetninger til de administrative registre.
Nedenfor er detaljerede beregninger gennemgået for hhv a-, b-grupper og c-grupper (for 0-årige).
(A) Alder & kalenderår, Lexis firkanter (a-grupper)
Lexis firkanter (alder ved død og kalenderår) er den mindst datakrævende beregningsmetode og metoden som ofte anvendes ved beregninger for større befolkninger.
Dødskvotienten beregnes som (døde i alder x)/(middelfolketal i alder x) for den samme tidsperiode.
Fra den almindelige befolkningsstatistik genfindes disse tal:
Alder 65 i slutningen af året=Alder 66 i begyndelsen af det efterfølgende år
Figur 2 Lexis firkanter, : mænd, født i Grønland
Dødshyppighed (alder: 65 ) = 38 / 1305 = 0.0291188
Udvandringshyppighed (alder: 65 ) = 15 / 1305 = 0.0114943
(B) Fødselsårgang og kalenderår, Lexis vertikale parallelogrammer (b-grupper)
Med Lexis vertikale parallelogrammer beregnes dødshyppigheder fra samme fødselsårgang(e), indenfor et kalenderår, som så strækker sig over 2 aldre. Korrektionsposten er her tilnærmelsesvis lig nul, pga. forskinkede indberetninger fra det administrative befolkningsregister.
Dødskvotienterne beregnes som summen af døde delt med summen af middelfolketallet.
Dødshyppigheden for alder x beregnes som gennemsnittet af 2 dødskvotienter som (dødskvotient i fødselsårgang x + dødskvotient i fødselsårgang x+1) for det samme tids span.
Figur 3 Lexis, vertikale parallelogrammer, : mænd, født i Grønland
# install.packages('pak')
::pak("StatisticsGreenland/statgl")
pak
library(tidyverse)
library(statgl)
# Download event data
<- map_df(2020:2024, ~ mutate(statgl_fetch(
events statgl_url("BEXCALCF"),
taar=.x,
faar=px_all(),
fsted=px_all(),
ttype=c("I","O","D"),
trekant=c("0","1"),
sex=px_all(),
.val_code = TRUE, .col_code = TRUE)
%>%
)) mutate(fsted=ifelse(fsted=="A","S",fsted),
age=strtoi(taar)-strtoi(faar)-strtoi(trekant)) %>%
filter(age>=0 & age < 100) %>%
group_by(fsted,trekant,ttype,age,taar,faar,sex) %>%
summarise(value=sum(value), .groups='drop') %>%
arrange(fsted,trekant,ttype,age,taar,faar,sex) %>%
mutate(value=ifelse(is.na(value),0,value))
Tabel 2a. B1 (rødt areal) - Alder: 65/66, Fødselsårgang: 1954 - 1958 | |||||||
---|---|---|---|---|---|---|---|
Fødested: Grønland | |||||||
period | Døde | Ind-vandring | Ud-vandring | Befolkning (primo) | Befolkning (ultimo) | Middelfolketal | Korrektioner |
Total | 45 | 6 | 21 | 1,391 | 1,329 | 1,360.0 | −2 |
2020 | 6 | 1 | 1 | 235 | 229 | 232.0 | 0 |
2021 | 10 | 1 | 5 | 268 | 254 | 261.0 | 0 |
2022 | 10 | 1 | 4 | 277 | 262 | 269.5 | −2 |
2023 | 12 | 2 | 6 | 291 | 275 | 283.0 | 0 |
2024 | 7 | 1 | 5 | 320 | 309 | 314.5 | 0 |
Tabel 2b. B2 (grønt areal) - Alder: 64/65, Fødselsårgang: 1955 - 1959 | |||||||
---|---|---|---|---|---|---|---|
Fødested: Grønland | |||||||
period | Døde | Ind-vandring | Ud-vandring | Befolkning (primo) | Befolkning (ultimo) | Middelfolketal | Korrektioner |
Total | 29 | 4 | 19 | 1,528 | 1,485 | 1,506.5 | 1 |
2020 | 7 | 0 | 3 | 277 | 268 | 272.5 | 1 |
2021 | 3 | 0 | 4 | 284 | 277 | 280.5 | 0 |
2022 | 4 | 2 | 5 | 298 | 291 | 294.5 | 0 |
2023 | 9 | 0 | 3 | 332 | 320 | 326.0 | 0 |
2024 | 6 | 2 | 4 | 337 | 329 | 333.0 | 0 |
Tabel 2c. Dødskvotienter (Dødsfald/Middelfolketal) | |||||
---|---|---|---|---|---|
Beregnet: fra totaler i B1 & B2 | |||||
src | Døde | Befolkning (primo) | Befolkning (ultimo) | Middelfolketal | Deathrate |
B1 | 45 | 1,391 | 1,329 | 1,360.0 | 0.0331 |
B2 | 29 | 1,528 | 1,485 | 1,506.5 | 0.0192 |
Tabel 2d. Udvandringskvotient (Udvandring/Middelfolketal) | |||||
---|---|---|---|---|---|
Beregnet: fra totaler i B1 & B2 | |||||
src | Udvandring | Befolkning (primo) | Befolkning (ultimo) | Middelfolketal | Emigrationrate |
B1 | 21 | 1,391 | 1,329 | 1,360.0 | 0.0154 |
B2 | 19 | 1,528 | 1,485 | 1,506.5 | 0.0126 |
Dødshyppighed (alder: 65 ) = sum(0.0330882, 0.0192499) / 2 = 0.0261691
Udvandringshyppighed (alder: 65 ) = sum(0.0154412, 0.012612) / 2 = 0.0140266
(C) Fødselsårgang, første leveår. Lexis horisontale parallelogrammer
I første leveår beregnes døds- og udvandringshyppighederne direkte fra fødsel til alder 1 år, som gennemsnit for 1 eller flere fødselsårgange.
Figur 4 Lexis, horisontale parallelogrammer, : mænd, født i Grønland
Tabel 3. Beregning af død- og udvandringshyppighed for 0-årige (5 år) | |||||
---|---|---|---|---|---|
cohort | Dødsfald | Udvandrede | Levendefødte | Dødshyppighed | Udvandringshyppighed |
Total | 6 | 138 | 1800 | 0.0033 | 0.0767 |
2019 | 2 | 35 | 395 | 0.0051 | 0.0886 |
2020 | 0 | 36 | 384 | 0.0000 | 0.0938 |
2021 | 1 | 38 | 325 | 0.0031 | 0.1169 |
2022 | 2 | 17 | 346 | 0.0058 | 0.0491 |
2023 | 1 | 12 | 350 | 0.0029 | 0.0343 |
Beregning af overlevelse
Til at beregne overlevelsestavlen anvendes R-pakken MortalityLaws, med funktionen LifeTable, der ud fra fx de beregnede aldersbetingede dødshyppigheder danner restlevetider mm.
Fra R-pakkens dokumentation:
Compute Life Tables from Mortality Data
Description
Construct either a full or abridged life table with various input: death counts and mid-interval population estimates
choices like-specific death rates (mx) or death probabilities (qx)
(Dx, Ex) or agecurve (lx) or a distribution of deaths (dx). If one of
or survivorship
these options is specified, the other can be ignored. The input data: numerical vector, matrix or data.frame.
can be an object of class
UsageLifeTable(x, Dx = NULL, Ex = NULL,mx = NULL,
qx = NULL,
lx = NULL,dx = NULL,sex = NULL,
lx0 = 1e5,ax = NULL)
library(MortalityLaws)
LifeTable(x, qx = d_dshyppighed, lx0 = 1000)
Ovenfor blev dødshyppigheden beregnet for 65-årige mænd, født i Grønland:
Dødshyppighed (alder: 65 ) = sum(0.0330882, 0.0192499) / 2 = 0.0261691,
og den ses i dette udsnit af den beregnede overlevelsestavle.
Tabel 4: Overlevelsestavle. Udsnit | |||||||||
---|---|---|---|---|---|---|---|---|---|
beregnet med MortalityLaws | |||||||||
x.int | x | mx | qx | ax | lx | dx | Lx | Tx | ex |
[63,64) | 63 | 0.02079611 | 0.02058136 | 0.4982670 | 748.6987 | 15.40924 | 740.9673 | 10151.582 | 13.55897 |
[64,65) | 64 | 0.02102954 | 0.02080996 | 0.4982476 | 733.2894 | 15.25973 | 725.6328 | 9410.614 | 12.83342 |
[65,66) | 65 | 0.02651758 | 0.02616908 | 0.4977902 | 718.0297 | 18.79017 | 708.5931 | 8684.981 | 12.09557 |
[66,67) | 66 | 0.02950112 | 0.02907021 | 0.4975416 | 699.2395 | 20.32704 | 689.0260 | 7976.388 | 11.40723 |
[67,68) | 67 | 0.03048136 | 0.03002149 | 0.4974599 | 678.9125 | 20.38197 | 668.6697 | 7287.362 | 10.73388 |
Tabel 4: Overlevelsestavle. Mænd | |||||||||
---|---|---|---|---|---|---|---|---|---|
beregnet med MortalityLaws | |||||||||
x.int | x | mx | qx | ax | lx | dx | Lx | Tx | ex |
[0,1) | 0 | 0.0033389013 | 0.0033333333 | 0.4997218 | 1000.000000 | 3.33333333 | 998.332406 | 68125.994147 | 68.1259941 |
[1,2) | 1 | 0.0018379952 | 0.0018363072 | 0.4998468 | 996.666667 | 1.83018613 | 995.751293 | 67127.661741 | 67.3521690 |
[2,3) | 2 | 0.0005217261 | 0.0005215900 | 0.4999565 | 994.836481 | 0.51889681 | 994.577010 | 66131.910448 | 66.4751562 |
[3,4) | 3 | 0.0002597065 | 0.0002596728 | 0.4999784 | 994.317584 | 0.25819724 | 994.188480 | 65137.333438 | 65.5095862 |
[4,5) | 4 | 0.0001000050 | 0.0001000000 | 0.4999917 | 994.059386 | 0.09940594 | 994.009683 | 64143.144958 | 64.5264718 |
[5,6) | 5 | 0.0005076142 | 0.0005074854 | 0.4999577 | 993.959981 | 0.50442019 | 993.707749 | 63149.135276 | 63.5328751 |
[6,7) | 6 | 0.0007607471 | 0.0007604578 | 0.4999366 | 993.455560 | 0.75548107 | 993.077772 | 62155.427527 | 62.5648796 |
[7,8) | 7 | 0.0002530044 | 0.0002529724 | 0.4999789 | 992.700079 | 0.25112575 | 992.574511 | 61162.349755 | 61.6121133 |
[8,9) | 8 | 0.0002694328 | 0.0002693966 | 0.4999775 | 992.448954 | 0.26736233 | 992.315266 | 60169.775244 | 60.6275769 |
[9,10) | 9 | 0.0002694328 | 0.0002693966 | 0.4999775 | 992.181591 | 0.26729030 | 992.047940 | 59177.459977 | 59.6437794 |
[10,11) | 10 | 0.0001000050 | 0.0001000000 | 0.4999917 | 991.914301 | 0.09919143 | 991.864704 | 58185.412037 | 58.6597169 |
[11,12) | 11 | 0.0001000050 | 0.0001000000 | 0.4999917 | 991.815109 | 0.09918151 | 991.765518 | 57193.547333 | 57.6655334 |
[12,13) | 12 | 0.0001000050 | 0.0001000000 | 0.4999917 | 991.715928 | 0.09917159 | 991.666341 | 56201.781815 | 56.6712505 |
[13,14) | 13 | 0.0005457026 | 0.0005455537 | 0.4999545 | 991.616756 | 0.54098023 | 991.346242 | 55210.115474 | 55.6768682 |
[14,15) | 14 | 0.0010975758 | 0.0010969736 | 0.4999085 | 991.075776 | 1.08718400 | 990.532085 | 54218.769232 | 54.7069866 |
[15,16) | 15 | 0.0021020948 | 0.0020998869 | 0.4998248 | 989.988592 | 2.07886410 | 988.948796 | 53228.237147 | 53.7665157 |
[16,17) | 16 | 0.0034453504 | 0.0034394219 | 0.4997129 | 987.909728 | 3.39783840 | 986.209833 | 52239.288351 | 52.8786051 |
[17,18) | 17 | 0.0039217564 | 0.0039140763 | 0.4996732 | 984.511890 | 3.85345467 | 982.583903 | 51253.078518 | 52.0593799 |
[18,19) | 18 | 0.0050950334 | 0.0050820758 | 0.4995754 | 980.658435 | 4.98378048 | 978.164429 | 50270.494615 | 51.2619816 |
[19,20) | 19 | 0.0050301743 | 0.0050175442 | 0.4995808 | 975.674654 | 4.89549071 | 973.224857 | 49292.330186 | 50.5212777 |
[20,21) | 20 | 0.0062491457 | 0.0062296604 | 0.4994792 | 970.779164 | 6.04762454 | 967.752202 | 48319.105329 | 49.7735295 |
[21,22) | 21 | 0.0074579158 | 0.0074301746 | 0.4993785 | 964.731539 | 7.16812376 | 961.143022 | 47351.353127 | 49.0824143 |
[22,23) | 22 | 0.0059600192 | 0.0059422935 | 0.4995033 | 957.563415 | 5.69012286 | 954.715528 | 46390.210105 | 48.4460970 |
[23,24) | 23 | 0.0044413896 | 0.0044315412 | 0.4996299 | 951.873293 | 4.21826570 | 949.762599 | 45435.494577 | 47.7327129 |
[24,25) | 24 | 0.0029723742 | 0.0029679610 | 0.4997523 | 947.655027 | 2.81260320 | 946.248029 | 44485.731978 | 46.9429600 |
[25,26) | 25 | 0.0033792278 | 0.0033735247 | 0.4997184 | 944.842424 | 3.18744923 | 943.247802 | 43539.483950 | 46.0812119 |
[26,27) | 26 | 0.0035336286 | 0.0035273927 | 0.4997055 | 941.654974 | 3.32158687 | 939.993203 | 42596.236148 | 45.2355027 |
[27,28) | 27 | 0.0029531225 | 0.0029487663 | 0.4997539 | 938.333388 | 2.76692589 | 936.949244 | 41656.242945 | 44.3938620 |
[28,29) | 28 | 0.0024439901 | 0.0024410060 | 0.4997963 | 935.566462 | 2.28372331 | 934.424135 | 40719.293701 | 43.5236783 |
[29,30) | 29 | 0.0014422678 | 0.0014412282 | 0.4998798 | 933.282738 | 1.34507342 | 932.610040 | 39784.869566 | 42.6289568 |
[30,31) | 30 | 0.0025980260 | 0.0025946541 | 0.4997835 | 931.937665 | 2.41805588 | 930.728114 | 38852.259526 | 41.6897621 |
[31,32) | 31 | 0.0023640659 | 0.0023612737 | 0.4998030 | 929.519609 | 2.19485018 | 928.421752 | 37921.531413 | 40.7969138 |
[32,33) | 32 | 0.0036836470 | 0.0036768707 | 0.4996930 | 927.324759 | 3.40965323 | 925.618886 | 36993.109661 | 39.8922916 |
[33,34) | 33 | 0.0047142261 | 0.0047031316 | 0.4996071 | 923.915106 | 4.34529435 | 921.740751 | 36067.490775 | 39.0376676 |
[34,35) | 34 | 0.0017906917 | 0.0017890894 | 0.4998508 | 919.569811 | 1.64519262 | 918.746970 | 35145.750024 | 38.2197736 |
[35,36) | 35 | 0.0007949112 | 0.0007945953 | 0.4999338 | 917.924619 | 0.72937859 | 917.559881 | 34227.003054 | 37.2873789 |
[36,37) | 36 | 0.0011270474 | 0.0011264125 | 0.4999061 | 917.195240 | 1.03314017 | 916.678573 | 33309.443173 | 36.3166333 |
[37,38) | 37 | 0.0020136252 | 0.0020115992 | 0.4998322 | 916.162100 | 1.84295099 | 915.240315 | 32392.764600 | 35.3570232 |
[38,39) | 38 | 0.0020461320 | 0.0020440401 | 0.4998295 | 914.319149 | 1.86890498 | 913.384378 | 31477.524285 | 34.4272832 |
[39,40) | 39 | 0.0027291673 | 0.0027254465 | 0.4997726 | 912.450244 | 2.48683437 | 911.206261 | 30564.139907 | 33.4967743 |
[40,41) | 40 | 0.0037589837 | 0.0037519276 | 0.4996868 | 909.963410 | 3.41411680 | 908.255282 | 29652.933646 | 32.5869517 |
[41,42) | 41 | 0.0052799301 | 0.0052660158 | 0.4995600 | 906.549293 | 4.77390287 | 904.160241 | 28744.678364 | 31.7077941 |
[42,43) | 42 | 0.0047809169 | 0.0047695065 | 0.4996016 | 901.775390 | 4.30102357 | 899.623165 | 27840.518123 | 30.8730072 |
[43,44) | 43 | 0.0054725058 | 0.0054575589 | 0.4995440 | 897.474366 | 4.89801919 | 895.023123 | 26940.894958 | 30.0185676 |
[44,45) | 44 | 0.0056351444 | 0.0056192967 | 0.4995304 | 892.576347 | 5.01565136 | 890.066166 | 26045.871835 | 29.1805535 |
[45,46) | 45 | 0.0028025849 | 0.0027986613 | 0.4997665 | 887.560696 | 2.48398175 | 886.318125 | 25155.805669 | 28.3426314 |
[46,47) | 46 | 0.0036888158 | 0.0036820205 | 0.4996926 | 885.076714 | 3.25887063 | 883.446277 | 24269.487544 | 27.4207729 |
[47,48) | 47 | 0.0045321349 | 0.0045218803 | 0.4996223 | 881.817844 | 3.98747471 | 879.822600 | 23386.041267 | 26.5202632 |
[48,49) | 48 | 0.0075432547 | 0.0075148758 | 0.4993714 | 877.830369 | 6.59678620 | 874.527829 | 22506.218667 | 25.6384599 |
[49,50) | 49 | 0.0090913437 | 0.0090501424 | 0.4992424 | 871.233583 | 7.88478802 | 867.285215 | 21631.690838 | 24.8288074 |
[50,51) | 50 | 0.0069545828 | 0.0069304556 | 0.4994205 | 863.348795 | 5.98340052 | 860.353627 | 20764.405623 | 24.0510044 |
[51,52) | 51 | 0.0070050262 | 0.0069805482 | 0.4994162 | 857.365394 | 5.98488045 | 854.369460 | 19904.051996 | 23.2153667 |
[52,53) | 52 | 0.0059988946 | 0.0059809371 | 0.4995001 | 851.380514 | 5.09205334 | 848.831941 | 19049.682536 | 22.3750511 |
[53,54) | 53 | 0.0073160795 | 0.0072893822 | 0.4993903 | 846.288460 | 6.16892001 | 843.200239 | 18200.850595 | 21.5066747 |
[54,55) | 54 | 0.0090440534 | 0.0090032789 | 0.4992463 | 840.119540 | 7.56383056 | 836.331924 | 17357.650356 | 20.6609292 |
[55,56) | 55 | 0.0081485249 | 0.0081154157 | 0.4993210 | 832.555710 | 6.75653564 | 829.172854 | 16521.318431 | 19.8440996 |
[56,57) | 56 | 0.0106842726 | 0.0106273985 | 0.4991096 | 825.799174 | 8.77609691 | 821.403312 | 15692.145577 | 19.0023750 |
[57,58) | 57 | 0.0115498437 | 0.0114834003 | 0.4990375 | 817.023077 | 9.38220302 | 812.322945 | 14870.742265 | 18.2011288 |
[58,59) | 58 | 0.0110615634 | 0.0110006092 | 0.4990782 | 807.640874 | 8.88454167 | 803.190414 | 14058.419320 | 17.4067705 |
[59,60) | 59 | 0.0124208664 | 0.0123440458 | 0.4989649 | 798.756332 | 9.85988474 | 793.816184 | 13255.228906 | 16.5948342 |
[60,61) | 60 | 0.0144503689 | 0.0143464635 | 0.4987958 | 788.896448 | 11.31787406 | 783.223882 | 12461.412722 | 15.7960056 |
[61,62) | 61 | 0.0182529188 | 0.0180873433 | 0.4984789 | 777.578574 | 14.06433057 | 770.525016 | 11678.188840 | 15.0186608 |
[62,63) | 62 | 0.0195952083 | 0.0194044700 | 0.4983671 | 763.514243 | 14.81558926 | 756.082256 | 10907.663825 | 14.2861301 |
[63,64) | 63 | 0.0207961093 | 0.0205813614 | 0.4982670 | 748.698654 | 15.40923757 | 740.967331 | 10151.581569 | 13.5589686 |
[64,65) | 64 | 0.0210295435 | 0.0208099646 | 0.4982476 | 733.289416 | 15.25972676 | 725.632811 | 9410.614238 | 12.8334243 |
[65,66) | 65 | 0.0265175799 | 0.0261690762 | 0.4977902 | 718.029690 | 18.79017363 | 708.593081 | 8684.981427 | 12.0955743 |
[66,67) | 66 | 0.0295011240 | 0.0290702137 | 0.4975416 | 699.239516 | 20.32704214 | 689.026023 | 7976.388346 | 11.4072334 |
[67,68) | 67 | 0.0304813644 | 0.0300214920 | 0.4974599 | 678.912474 | 20.38196539 | 668.669719 | 7287.362323 | 10.7338760 |
[68,69) | 68 | 0.0413323071 | 0.0404897751 | 0.4965557 | 658.530508 | 26.66375218 | 645.106795 | 6618.692604 | 10.0507000 |
[69,70) | 69 | 0.0532945865 | 0.0518993263 | 0.4955590 | 631.866756 | 32.79345898 | 615.324391 | 5973.585809 | 9.4538694 |
[70,71) | 70 | 0.0593725101 | 0.0576443332 | 0.4950526 | 599.073297 | 34.53318076 | 581.635857 | 5358.261418 | 8.9442501 |
[71,72) | 71 | 0.0584736855 | 0.0567969400 | 0.4951275 | 564.540116 | 32.06415111 | 548.351807 | 4776.625561 | 8.4610915 |
[72,73) | 72 | 0.0576426993 | 0.0560128255 | 0.4951967 | 532.475965 | 29.82548334 | 517.419963 | 4228.273754 | 7.9407786 |
[73,74) | 73 | 0.0704492436 | 0.0680249580 | 0.4941297 | 502.650482 | 34.19277791 | 485.353372 | 3710.853791 | 7.3825728 |
[74,75) | 74 | 0.0914065364 | 0.0873533886 | 0.4923838 | 468.457704 | 40.92136788 | 447.685357 | 3225.500419 | 6.8853610 |
[75,76) | 75 | 0.0982415067 | 0.0935700316 | 0.4918145 | 427.536336 | 40.00458849 | 407.206585 | 2777.815062 | 6.4972608 |
[76,77) | 76 | 0.1033650357 | 0.0982022750 | 0.4913878 | 387.531748 | 38.05649926 | 368.175747 | 2370.608477 | 6.1171981 |
[77,78) | 77 | 0.1164517919 | 0.1099269953 | 0.4902979 | 349.475248 | 38.41676401 | 329.894142 | 2002.432730 | 5.7298270 |
[78,79) | 78 | 0.1351023744 | 0.1263735299 | 0.4887449 | 311.058484 | 39.30955867 | 290.961272 | 1672.538588 | 5.3769264 |
[79,80) | 79 | 0.1314568557 | 0.1231828960 | 0.4890484 | 271.748926 | 33.47481966 | 254.644914 | 1381.577316 | 5.0840213 |
[80,81) | 80 | 0.1604955189 | 0.1482783598 | 0.4866311 | 238.274106 | 35.33089364 | 220.136325 | 1126.932402 | 4.7295630 |
[81,82) | 81 | 0.1710565181 | 0.1572260599 | 0.4857522 | 202.943212 | 31.90796167 | 186.534615 | 906.796078 | 4.4682257 |
[82,83) | 82 | 0.1646344420 | 0.1517962850 | 0.4862867 | 171.035251 | 25.96251567 | 157.697960 | 720.261463 | 4.2111872 |
[83,84) | 83 | 0.1875322304 | 0.1709976013 | 0.4843815 | 145.072735 | 24.80708972 | 132.281740 | 562.563503 | 3.8778031 |
[84,85) | 84 | 0.2368323279 | 0.2108764091 | 0.4802824 | 120.265645 | 25.36118744 | 107.084990 | 430.281763 | 3.5777612 |
[85,86) | 85 | 0.2485966996 | 0.2201055583 | 0.4793049 | 94.904458 | 20.88899871 | 84.027659 | 323.196773 | 3.4054962 |
[86,87) | 86 | 0.2297176885 | 0.2052420598 | 0.4808737 | 74.015459 | 15.19108532 | 66.129367 | 239.169114 | 3.2313400 |
[87,88) | 87 | 0.2439736928 | 0.2164917541 | 0.4796890 | 58.824374 | 12.73499190 | 52.198218 | 173.039747 | 2.9416335 |
[88,89) | 88 | 0.2689273365 | 0.2358012170 | 0.4776164 | 46.089382 | 10.86793238 | 40.412152 | 120.841530 | 2.6218952 |
[89,90) | 89 | 0.4303895251 | 0.3497442455 | 0.4642444 | 35.221450 | 12.31849934 | 28.621745 | 80.429378 | 2.2835340 |
[90,91) | 90 | 0.3485854399 | 0.2943143813 | 0.4710099 | 22.902950 | 6.74066765 | 19.337204 | 51.807633 | 2.2620506 |
[91,92) | 91 | 0.4209692946 | 0.3435897436 | 0.4650224 | 16.162283 | 5.55319456 | 13.191448 | 32.470429 | 2.0090249 |
[92,93) | 92 | 0.4970323016 | 0.3916666667 | 0.4587502 | 10.609088 | 4.15522618 | 8.360073 | 19.278981 | 1.8172138 |
[93,94) | 93 | 0.3930425881 | 0.3250000000 | 0.4673305 | 6.453862 | 2.09750513 | 5.336585 | 10.918908 | 1.6918410 |
[94,95) | 94 | 0.2231435513 | 0.2000000000 | 0.4814201 | 4.356357 | 0.87127136 | 3.904533 | 5.582323 | 1.2814201 |
[95,+) | 95 | 0.1266861302 | 0.0001000000 | 0.4814201 | 3.485085 | 3.48508544 | 1.677790 | 1.677790 | 0.4814201 |
Tabel 4: Overlevelsestavle. Kvinder | |||||||||
---|---|---|---|---|---|---|---|---|---|
beregnet med MortalityLaws | |||||||||
x.int | x | mx | qx | ax | lx | dx | Lx | Tx | ex |
[0,1) | 0 | 0.0045248946 | 0.0045146727 | 0.4996229 | 1000.00000 | 4.51467269 | 997.740961 | 73445.091835 | 73.4450918 |
[1,2) | 1 | 0.0018716327 | 0.0018698823 | 0.4998440 | 995.48533 | 1.86144042 | 994.554317 | 72447.350874 | 72.7759103 |
[2,3) | 2 | 0.0005269761 | 0.0005268373 | 0.4999561 | 993.62389 | 0.52347810 | 993.362125 | 71452.796557 | 71.9113112 |
[3,4) | 3 | 0.0005257816 | 0.0005256434 | 0.4999562 | 993.10041 | 0.52201666 | 992.839378 | 70459.434432 | 70.9489532 |
[4,5) | 4 | 0.0002644453 | 0.0002644104 | 0.4999780 | 992.57839 | 0.26244801 | 992.447162 | 69466.595054 | 69.9860037 |
[5,6) | 5 | 0.0002763576 | 0.0002763194 | 0.4999770 | 992.31594 | 0.27419617 | 992.178840 | 68474.147892 | 69.0043814 |
[6,7) | 6 | 0.0002763576 | 0.0002763194 | 0.4999770 | 992.04175 | 0.27412041 | 991.904681 | 67481.969052 | 68.0233157 |
[7,8) | 7 | 0.0001000050 | 0.0001000000 | 0.4999917 | 991.76763 | 0.09917676 | 991.718038 | 66490.064371 | 67.0419789 |
[8,9) | 8 | 0.0001000050 | 0.0001000000 | 0.4999917 | 991.66845 | 0.09916685 | 991.618867 | 65498.346333 | 66.0486338 |
[9,10) | 9 | 0.0002932121 | 0.0002931692 | 0.4999756 | 991.56928 | 0.29069753 | 991.423928 | 64506.727466 | 65.0551893 |
[10,11) | 10 | 0.0002932121 | 0.0002931692 | 0.4999756 | 991.27859 | 0.29061231 | 991.133273 | 63515.303538 | 64.0741204 |
[11,12) | 11 | 0.0002905710 | 0.0002905288 | 0.4999758 | 990.98797 | 0.28791051 | 990.844012 | 62524.170265 | 63.0927639 |
[12,13) | 12 | 0.0005833533 | 0.0005831831 | 0.4999514 | 990.70006 | 0.57775957 | 990.411156 | 61533.326253 | 62.1109542 |
[13,14) | 13 | 0.0005831001 | 0.0005829301 | 0.4999514 | 990.12230 | 0.57717213 | 989.833690 | 60542.915097 | 61.1469056 |
[14,15) | 14 | 0.0008788972 | 0.0008785111 | 0.4999268 | 989.54513 | 0.86932634 | 989.110405 | 59553.081407 | 60.1822792 |
[15,16) | 15 | 0.0012499547 | 0.0012491738 | 0.4998958 | 988.67581 | 1.23502794 | 988.058163 | 58563.971002 | 59.2347569 |
[16,17) | 16 | 0.0009993898 | 0.0009988905 | 0.4999167 | 987.44078 | 0.98634526 | 986.947523 | 57575.912839 | 58.3082187 |
[17,18) | 17 | 0.0015374556 | 0.0015362744 | 0.4998719 | 986.45443 | 1.51546465 | 985.696506 | 56588.965316 | 57.3660206 |
[18,19) | 18 | 0.0017784391 | 0.0017768587 | 0.4998518 | 984.93897 | 1.75009733 | 984.063660 | 55603.268811 | 56.4535171 |
[19,20) | 19 | 0.0017537822 | 0.0017522452 | 0.4998539 | 983.18887 | 1.72278800 | 982.327225 | 54619.205151 | 55.5531158 |
[20,21) | 20 | 0.0023450219 | 0.0023422745 | 0.4998046 | 981.46608 | 2.29886298 | 980.316202 | 53636.877926 | 54.6497519 |
[21,22) | 21 | 0.0026075062 | 0.0026041097 | 0.4997827 | 979.16722 | 2.54985881 | 977.891736 | 52656.561725 | 53.7768837 |
[22,23) | 22 | 0.0020076835 | 0.0020056695 | 0.4998327 | 976.61736 | 1.95877165 | 975.637647 | 51678.669989 | 52.9159854 |
[23,24) | 23 | 0.0019687101 | 0.0019667735 | 0.4998359 | 974.65859 | 1.91693266 | 973.699808 | 50703.032342 | 52.0213262 |
[24,25) | 24 | 0.0019344235 | 0.0019325537 | 0.4998388 | 972.74166 | 1.87987551 | 971.801415 | 49729.332534 | 51.1228569 |
[25,26) | 25 | 0.0008003569 | 0.0008000367 | 0.4999333 | 970.86178 | 0.77672505 | 970.473366 | 48757.531118 | 50.2208781 |
[26,27) | 26 | 0.0018173718 | 0.0018157214 | 0.4998486 | 970.08506 | 1.76140418 | 969.204087 | 47787.057752 | 49.2606885 |
[27,28) | 27 | 0.0020632716 | 0.0020611445 | 0.4998281 | 968.32365 | 1.99585499 | 967.325381 | 46817.853665 | 48.3493857 |
[28,29) | 28 | 0.0012673592 | 0.0012665564 | 0.4998944 | 966.32780 | 1.22390867 | 965.715713 | 45850.528284 | 47.4482142 |
[29,30) | 29 | 0.0007572889 | 0.0007570023 | 0.4999369 | 965.10389 | 0.73058583 | 964.738549 | 44884.812571 | 46.5077523 |
[30,31) | 30 | 0.0002448880 | 0.0002448580 | 0.4999796 | 964.37330 | 0.23613450 | 964.255230 | 43920.074022 | 45.5426067 |
[31,32) | 31 | 0.0004851871 | 0.0004850694 | 0.4999596 | 964.13717 | 0.46767341 | 963.903312 | 42955.818792 | 44.5536385 |
[32,33) | 32 | 0.0009821666 | 0.0009816844 | 0.4999182 | 963.66949 | 0.94601935 | 963.196407 | 41991.915480 | 43.5750179 |
[33,34) | 33 | 0.0012474289 | 0.0012466511 | 0.4998960 | 962.72347 | 1.20018031 | 962.123260 | 41028.719073 | 42.6173456 |
[34,35) | 34 | 0.0010288565 | 0.0010283274 | 0.4999143 | 961.52329 | 0.98876078 | 961.028829 | 40066.595813 | 41.6699169 |
[35,36) | 35 | 0.0013518773 | 0.0013509639 | 0.4998873 | 960.53453 | 1.29764751 | 959.885564 | 39105.566984 | 40.7122968 |
[36,37) | 36 | 0.0014165341 | 0.0014155313 | 0.4998820 | 959.23689 | 1.35782983 | 958.557811 | 38145.681420 | 39.7666958 |
[37,38) | 37 | 0.0008899538 | 0.0008895580 | 0.4999258 | 957.87906 | 0.85208893 | 957.452949 | 37187.123609 | 38.8223580 |
[38,39) | 38 | 0.0015391190 | 0.0015379352 | 0.4998717 | 957.02697 | 1.47184544 | 956.290856 | 36229.670661 | 37.8564783 |
[39,40) | 39 | 0.0028360261 | 0.0028320084 | 0.4997637 | 955.55512 | 2.70614013 | 954.201412 | 35273.379805 | 36.9140189 |
[40,41) | 40 | 0.0022613796 | 0.0022588246 | 0.4998116 | 952.84898 | 2.15231875 | 951.772417 | 34319.178392 | 36.0174372 |
[41,42) | 41 | 0.0006631300 | 0.0006629102 | 0.4999447 | 950.69666 | 0.63022649 | 950.381515 | 33367.405976 | 35.0978469 |
[42,43) | 42 | 0.0007432182 | 0.0007429421 | 0.4999381 | 950.06644 | 0.70584431 | 949.713471 | 32417.024461 | 34.1207975 |
[43,44) | 43 | 0.0023579730 | 0.0023551952 | 0.4998035 | 949.36059 | 2.23592949 | 948.242188 | 31467.310990 | 33.1457944 |
[44,45) | 44 | 0.0028881451 | 0.0028839784 | 0.4997593 | 947.12466 | 2.73148710 | 945.758262 | 30519.068802 | 32.2228636 |
[45,46) | 45 | 0.0035353035 | 0.0035290617 | 0.4997054 | 944.39318 | 3.33282174 | 942.725783 | 29573.310540 | 31.3146169 |
[46,47) | 46 | 0.0031827826 | 0.0031777229 | 0.4997348 | 941.06035 | 2.99042904 | 939.564346 | 28630.584757 | 30.4237498 |
[47,48) | 47 | 0.0018424694 | 0.0018407731 | 0.4998465 | 938.06992 | 1.72677391 | 937.206273 | 27691.020410 | 29.5191432 |
[48,49) | 48 | 0.0013639901 | 0.0013630603 | 0.4998863 | 936.34315 | 1.27629219 | 935.704860 | 26753.814138 | 28.5726596 |
[49,50) | 49 | 0.0012938505 | 0.0012930139 | 0.4998922 | 935.06686 | 1.20905443 | 934.462201 | 25818.109278 | 27.6109767 |
[50,51) | 50 | 0.0043012599 | 0.0042920227 | 0.4996416 | 933.85780 | 4.00813893 | 931.852298 | 24883.647077 | 26.6460771 |
[51,52) | 51 | 0.0085011580 | 0.0084651253 | 0.4992916 | 929.84967 | 7.87129396 | 925.908442 | 23951.794778 | 25.7587819 |
[52,53) | 52 | 0.0059449658 | 0.0059273294 | 0.4995046 | 921.97837 | 5.46486955 | 919.243229 | 23025.886336 | 24.9744322 |
[53,54) | 53 | 0.0044319613 | 0.0044221546 | 0.4996307 | 916.51350 | 4.05296444 | 914.485523 | 22106.643107 | 24.1203682 |
[54,55) | 54 | 0.0068318583 | 0.0068085742 | 0.4994307 | 912.46054 | 6.21255526 | 909.350723 | 21192.157584 | 23.2252867 |
[55,56) | 55 | 0.0071685759 | 0.0071429429 | 0.4994026 | 906.24798 | 6.47327759 | 903.007476 | 20282.806861 | 22.3810781 |
[56,57) | 56 | 0.0087498920 | 0.0087117231 | 0.4992708 | 899.77470 | 7.83858812 | 895.849695 | 19379.799384 | 21.5385021 |
[57,58) | 57 | 0.0096257628 | 0.0095795834 | 0.4991979 | 891.93612 | 8.54437640 | 887.657075 | 18483.949689 | 20.7234009 |
[58,59) | 58 | 0.0075173703 | 0.0074891855 | 0.4993736 | 883.39174 | 6.61588465 | 880.079653 | 17596.292615 | 19.9190142 |
[59,60) | 59 | 0.0064275548 | 0.0064069423 | 0.4994644 | 876.77586 | 5.61745230 | 873.964120 | 16716.212961 | 19.0655489 |
[60,61) | 60 | 0.0086813898 | 0.0086438154 | 0.4992766 | 871.15840 | 7.53013240 | 867.387889 | 15842.248841 | 18.1852678 |
[61,62) | 61 | 0.0107141518 | 0.0106569597 | 0.4991072 | 863.62827 | 9.20365169 | 859.018228 | 14974.860952 | 17.3394752 |
[62,63) | 62 | 0.0134310349 | 0.0133412410 | 0.4988808 | 854.42462 | 11.39908474 | 848.712318 | 14115.842724 | 16.5208755 |
[63,64) | 63 | 0.0172063970 | 0.0170592124 | 0.4985661 | 843.02553 | 14.38135162 | 835.814238 | 13267.130406 | 15.7375190 |
[64,65) | 64 | 0.0158331998 | 0.0157085136 | 0.4986806 | 828.64418 | 13.01676840 | 822.118624 | 12431.316168 | 15.0019953 |
[65,66) | 65 | 0.0142630656 | 0.0141618300 | 0.4988114 | 815.62741 | 11.55077679 | 809.838297 | 11609.197544 | 14.2334568 |
[66,67) | 66 | 0.0264473730 | 0.0261007041 | 0.4977961 | 804.07664 | 20.98696636 | 793.536901 | 10799.359247 | 13.4307586 |
[67,68) | 67 | 0.0323684748 | 0.0318502224 | 0.4973027 | 783.08967 | 24.94158019 | 770.551606 | 10005.822347 | 12.7773647 |
[68,69) | 68 | 0.0289023498 | 0.0284886719 | 0.4975915 | 758.14809 | 21.59863222 | 747.296755 | 9235.270741 | 12.1813546 |
[69,70) | 69 | 0.0307404152 | 0.0302727331 | 0.4974383 | 736.54946 | 22.29736521 | 725.343658 | 8487.973986 | 11.5239702 |
[70,71) | 70 | 0.0362570775 | 0.0356076620 | 0.4969786 | 714.25209 | 25.43284713 | 701.458828 | 7762.630328 | 10.8681940 |
[71,72) | 71 | 0.0380823249 | 0.0373663111 | 0.4968265 | 688.81925 | 25.73863424 | 675.868249 | 7061.171500 | 10.2511240 |
[72,73) | 72 | 0.0421931769 | 0.0413154330 | 0.4964840 | 663.08061 | 27.39546261 | 649.286559 | 6385.303251 | 9.6297541 |
[73,74) | 73 | 0.0541294673 | 0.0526905471 | 0.4954894 | 635.68515 | 33.49459830 | 618.786771 | 5736.016692 | 9.0233612 |
[74,75) | 74 | 0.0591934032 | 0.0574755357 | 0.4950675 | 602.19055 | 34.61122455 | 584.714219 | 5117.229922 | 8.4976922 |
[75,76) | 75 | 0.0690283646 | 0.0666997930 | 0.4942481 | 567.57933 | 37.85742358 | 548.432863 | 4532.515702 | 7.9856955 |
[76,77) | 76 | 0.0761755369 | 0.0733464696 | 0.4936527 | 529.72190 | 38.85323148 | 510.048672 | 3984.082840 | 7.5210838 |
[77,78) | 77 | 0.0641867766 | 0.0621701815 | 0.4946515 | 490.86867 | 30.51739441 | 475.446751 | 3474.034167 | 7.0773190 |
[78,79) | 78 | 0.0798346977 | 0.0767310478 | 0.4933478 | 460.35128 | 35.32323585 | 442.454683 | 2998.587416 | 6.5136941 |
[79,80) | 79 | 0.1206577302 | 0.1136627258 | 0.4899476 | 425.02804 | 48.30984573 | 400.387490 | 2556.132733 | 6.0140332 |
[80,81) | 80 | 0.1375832116 | 0.1285381688 | 0.4885383 | 376.71820 | 48.42266701 | 351.951858 | 2155.745243 | 5.7224346 |
[81,82) | 81 | 0.1282838843 | 0.1203963620 | 0.4893126 | 328.29553 | 39.52558732 | 308.110310 | 1803.793385 | 5.4944196 |
[82,83) | 82 | 0.1375378082 | 0.1284986006 | 0.4885421 | 288.76994 | 37.10653335 | 269.791513 | 1495.683075 | 5.1794971 |
[83,84) | 83 | 0.1374284504 | 0.1284032898 | 0.4885512 | 251.66341 | 32.31440952 | 235.136243 | 1225.891563 | 4.8711554 |
[84,85) | 84 | 0.1310204057 | 0.1228001257 | 0.4890848 | 219.34900 | 26.93608459 | 205.586942 | 990.755319 | 4.5167989 |
[85,86) | 85 | 0.1774640415 | 0.1626088899 | 0.4852191 | 192.41291 | 31.28805033 | 176.306423 | 785.168377 | 4.0806428 |
[86,87) | 86 | 0.2011629171 | 0.1822208095 | 0.4832477 | 161.12486 | 29.36030307 | 145.952860 | 608.861954 | 3.7788206 |
[87,88) | 87 | 0.1743857321 | 0.1600271693 | 0.4854752 | 131.76456 | 21.08590963 | 120.915337 | 462.909094 | 3.5131533 |
[88,89) | 88 | 0.2193199623 | 0.1969352734 | 0.4817380 | 110.67865 | 21.79653037 | 99.382337 | 341.993757 | 3.0899704 |
[89,90) | 89 | 0.3071210829 | 0.2644384684 | 0.4744467 | 88.88212 | 23.50385182 | 76.529594 | 242.611420 | 2.7295863 |
[90,91) | 90 | 0.2992560561 | 0.2586304471 | 0.4750991 | 65.37827 | 16.90881086 | 56.502819 | 166.081826 | 2.5403216 |
[91,92) | 91 | 0.3209349654 | 0.2745295699 | 0.4733012 | 48.46946 | 13.30629941 | 41.461046 | 109.579007 | 2.2607847 |
[92,93) | 92 | 0.4404448270 | 0.3562500000 | 0.4634144 | 35.16316 | 12.52687519 | 28.441417 | 68.117961 | 1.9371969 |
[93,94) | 93 | 0.3242396682 | 0.2769230769 | 0.4730273 | 22.63628 | 6.26850920 | 19.332950 | 39.676543 | 1.7527852 |
[94,95) | 94 | 0.2676413216 | 0.2348178138 | 0.4777231 | 16.36777 | 3.84344491 | 14.360432 | 20.343593 | 1.2429053 |
[95,+) | 95 | 0.2209226200 | 0.4245614035 | 0.4777231 | 12.52433 | 12.52432912 | 5.983162 | 5.983162 | 0.4777231 |
Dødelighed
Dødelighed efter køn, : mænd, født i Grønland
Tabel 5: Dødshyppigheder beregnet som a- og b-grupper. | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2020 - 2024 | ||||||||||||
Født i Grønland | Total | |||||||||||
age | A | B | A | B | ||||||||
Kvinder | Mænd | I alt | Kvinder | Mænd | I alt | Kvinder | Mænd | I alt | Kvinder | Mænd | I alt | |
0 | 0.0005 | 0.0005 | 0.0005 | 0.0045 | 0.0033 | 0.0039 | 0.0005 | 0.0005 | 0.0005 | 0.0041 | 0.0030 | 0.0036 |
1 | 0.0026 | 0.0031 | 0.0029 | 0.0019 | 0.0018 | 0.0019 | 0.0025 | 0.0030 | 0.0027 | 0.0018 | 0.0018 | 0.0018 |
2 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 |
3 | 0.0011 | 0.0001 | 0.0005 | 0.0005 | 0.0003 | 0.0004 | 0.0010 | 0.0001 | 0.0005 | 0.0005 | 0.0002 | 0.0004 |
4 | 0.0001 | 0.0001 | 0.0001 | 0.0003 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0002 | 0.0001 | 0.0001 |
5 | 0.0006 | 0.0005 | 0.0005 | 0.0003 | 0.0005 | 0.0004 | 0.0005 | 0.0005 | 0.0005 | 0.0003 | 0.0005 | 0.0004 |
6 | 0.0001 | 0.0005 | 0.0003 | 0.0003 | 0.0008 | 0.0005 | 0.0001 | 0.0005 | 0.0003 | 0.0003 | 0.0007 | 0.0005 |
7 | 0.0001 | 0.0005 | 0.0003 | 0.0001 | 0.0003 | 0.0001 | 0.0001 | 0.0005 | 0.0003 | 0.0001 | 0.0002 | 0.0001 |
8 | 0.0001 | 0.0005 | 0.0003 | 0.0001 | 0.0003 | 0.0001 | 0.0001 | 0.0005 | 0.0003 | 0.0001 | 0.0003 | 0.0001 |
9 | 0.0006 | 0.0001 | 0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.0006 | 0.0001 | 0.0003 | 0.0003 | 0.0003 | 0.0003 |
10 | 0.0001 | 0.0001 | 0.0001 | 0.0003 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0003 | 0.0001 | 0.0001 |
11 | 0.0001 | 0.0001 | 0.0001 | 0.0003 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0003 | 0.0001 | 0.0001 |
12 | 0.0006 | 0.0001 | 0.0003 | 0.0006 | 0.0001 | 0.0003 | 0.0005 | 0.0001 | 0.0003 | 0.0006 | 0.0001 | 0.0003 |
13 | 0.0006 | 0.0011 | 0.0008 | 0.0006 | 0.0005 | 0.0006 | 0.0006 | 0.0010 | 0.0008 | 0.0006 | 0.0005 | 0.0005 |
14 | 0.0012 | 0.0011 | 0.0011 | 0.0009 | 0.0011 | 0.0010 | 0.0011 | 0.0011 | 0.0011 | 0.0008 | 0.0010 | 0.0009 |
15 | 0.0013 | 0.0018 | 0.0016 | 0.0012 | 0.0021 | 0.0017 | 0.0013 | 0.0018 | 0.0015 | 0.0012 | 0.0020 | 0.0016 |
16 | 0.0013 | 0.0038 | 0.0026 | 0.0010 | 0.0034 | 0.0023 | 0.0013 | 0.0036 | 0.0025 | 0.0010 | 0.0033 | 0.0022 |
17 | 0.0018 | 0.0040 | 0.0029 | 0.0015 | 0.0039 | 0.0028 | 0.0017 | 0.0038 | 0.0028 | 0.0015 | 0.0037 | 0.0026 |
18 | 0.0006 | 0.0050 | 0.0028 | 0.0018 | 0.0051 | 0.0035 | 0.0011 | 0.0048 | 0.0030 | 0.0020 | 0.0048 | 0.0034 |
19 | 0.0029 | 0.0039 | 0.0034 | 0.0018 | 0.0050 | 0.0034 | 0.0027 | 0.0037 | 0.0032 | 0.0019 | 0.0048 | 0.0034 |
20 | 0.0023 | 0.0062 | 0.0043 | 0.0023 | 0.0062 | 0.0043 | 0.0022 | 0.0059 | 0.0040 | 0.0022 | 0.0059 | 0.0041 |
21 | 0.0023 | 0.0067 | 0.0045 | 0.0026 | 0.0074 | 0.0050 | 0.0021 | 0.0063 | 0.0042 | 0.0024 | 0.0070 | 0.0047 |
22 | 0.0017 | 0.0066 | 0.0042 | 0.0020 | 0.0059 | 0.0040 | 0.0016 | 0.0061 | 0.0039 | 0.0019 | 0.0055 | 0.0037 |
23 | 0.0027 | 0.0048 | 0.0038 | 0.0020 | 0.0044 | 0.0032 | 0.0025 | 0.0044 | 0.0035 | 0.0018 | 0.0041 | 0.0030 |
24 | 0.0016 | 0.0036 | 0.0026 | 0.0019 | 0.0030 | 0.0025 | 0.0015 | 0.0033 | 0.0024 | 0.0018 | 0.0027 | 0.0023 |
25 | 0.0001 | 0.0010 | 0.0005 | 0.0008 | 0.0034 | 0.0021 | 0.0001 | 0.0009 | 0.0005 | 0.0007 | 0.0030 | 0.0019 |
26 | 0.0015 | 0.0049 | 0.0033 | 0.0018 | 0.0035 | 0.0027 | 0.0014 | 0.0043 | 0.0029 | 0.0016 | 0.0031 | 0.0024 |
27 | 0.0025 | 0.0029 | 0.0027 | 0.0021 | 0.0029 | 0.0025 | 0.0022 | 0.0025 | 0.0024 | 0.0018 | 0.0026 | 0.0022 |
28 | 0.0010 | 0.0019 | 0.0015 | 0.0013 | 0.0024 | 0.0019 | 0.0009 | 0.0016 | 0.0013 | 0.0011 | 0.0021 | 0.0016 |
29 | 0.0010 | 0.0009 | 0.0010 | 0.0008 | 0.0014 | 0.0011 | 0.0008 | 0.0008 | 0.0008 | 0.0006 | 0.0012 | 0.0009 |
30 | 0.0005 | 0.0024 | 0.0014 | 0.0002 | 0.0026 | 0.0014 | 0.0004 | 0.0020 | 0.0012 | 0.0002 | 0.0024 | 0.0013 |
31 | 0.0001 | 0.0034 | 0.0017 | 0.0005 | 0.0024 | 0.0014 | 0.0001 | 0.0032 | 0.0017 | 0.0004 | 0.0022 | 0.0013 |
32 | 0.0010 | 0.0020 | 0.0015 | 0.0010 | 0.0037 | 0.0023 | 0.0009 | 0.0021 | 0.0015 | 0.0009 | 0.0033 | 0.0021 |
33 | 0.0015 | 0.0067 | 0.0041 | 0.0012 | 0.0047 | 0.0030 | 0.0013 | 0.0055 | 0.0035 | 0.0011 | 0.0041 | 0.0026 |
34 | 0.0011 | 0.0021 | 0.0016 | 0.0010 | 0.0018 | 0.0014 | 0.0014 | 0.0018 | 0.0016 | 0.0011 | 0.0017 | 0.0014 |
35 | 0.0011 | 0.0006 | 0.0008 | 0.0014 | 0.0008 | 0.0011 | 0.0010 | 0.0009 | 0.0010 | 0.0014 | 0.0009 | 0.0011 |
36 | 0.0018 | 0.0011 | 0.0015 | 0.0014 | 0.0011 | 0.0013 | 0.0016 | 0.0009 | 0.0012 | 0.0012 | 0.0009 | 0.0011 |
37 | 0.0012 | 0.0023 | 0.0018 | 0.0009 | 0.0020 | 0.0015 | 0.0011 | 0.0019 | 0.0015 | 0.0008 | 0.0016 | 0.0012 |
38 | 0.0013 | 0.0012 | 0.0012 | 0.0015 | 0.0020 | 0.0018 | 0.0011 | 0.0010 | 0.0010 | 0.0013 | 0.0017 | 0.0015 |
39 | 0.0032 | 0.0031 | 0.0032 | 0.0028 | 0.0027 | 0.0028 | 0.0028 | 0.0025 | 0.0027 | 0.0025 | 0.0022 | 0.0023 |
40 | 0.0027 | 0.0052 | 0.0040 | 0.0023 | 0.0038 | 0.0030 | 0.0023 | 0.0041 | 0.0033 | 0.0020 | 0.0030 | 0.0025 |
41 | 0.0001 | 0.0021 | 0.0011 | 0.0007 | 0.0053 | 0.0030 | 0.0006 | 0.0016 | 0.0011 | 0.0009 | 0.0042 | 0.0026 |
42 | 0.0008 | 0.0072 | 0.0041 | 0.0007 | 0.0048 | 0.0028 | 0.0007 | 0.0061 | 0.0036 | 0.0013 | 0.0043 | 0.0029 |
43 | 0.0016 | 0.0038 | 0.0028 | 0.0024 | 0.0055 | 0.0040 | 0.0021 | 0.0035 | 0.0028 | 0.0023 | 0.0047 | 0.0036 |
44 | 0.0026 | 0.0080 | 0.0054 | 0.0029 | 0.0056 | 0.0043 | 0.0022 | 0.0061 | 0.0043 | 0.0024 | 0.0046 | 0.0036 |
45 | 0.0054 | 0.0016 | 0.0034 | 0.0035 | 0.0028 | 0.0031 | 0.0046 | 0.0018 | 0.0031 | 0.0030 | 0.0027 | 0.0028 |
46 | 0.0027 | 0.0057 | 0.0043 | 0.0032 | 0.0037 | 0.0034 | 0.0031 | 0.0049 | 0.0041 | 0.0031 | 0.0031 | 0.0031 |
47 | 0.0018 | 0.0041 | 0.0030 | 0.0018 | 0.0045 | 0.0033 | 0.0016 | 0.0031 | 0.0024 | 0.0020 | 0.0037 | 0.0029 |
48 | 0.0017 | 0.0073 | 0.0046 | 0.0014 | 0.0075 | 0.0045 | 0.0015 | 0.0073 | 0.0047 | 0.0012 | 0.0065 | 0.0042 |
49 | 0.0016 | 0.0084 | 0.0051 | 0.0013 | 0.0091 | 0.0053 | 0.0014 | 0.0063 | 0.0042 | 0.0011 | 0.0074 | 0.0046 |
50 | 0.0043 | 0.0076 | 0.0060 | 0.0043 | 0.0069 | 0.0057 | 0.0039 | 0.0059 | 0.0050 | 0.0038 | 0.0052 | 0.0046 |
51 | 0.0044 | 0.0043 | 0.0044 | 0.0085 | 0.0070 | 0.0077 | 0.0040 | 0.0034 | 0.0037 | 0.0076 | 0.0054 | 0.0064 |
52 | 0.0074 | 0.0044 | 0.0058 | 0.0059 | 0.0060 | 0.0060 | 0.0068 | 0.0040 | 0.0053 | 0.0057 | 0.0052 | 0.0054 |
53 | 0.0036 | 0.0094 | 0.0066 | 0.0044 | 0.0073 | 0.0059 | 0.0038 | 0.0086 | 0.0064 | 0.0044 | 0.0071 | 0.0058 |
54 | 0.0083 | 0.0060 | 0.0071 | 0.0068 | 0.0090 | 0.0079 | 0.0077 | 0.0066 | 0.0071 | 0.0063 | 0.0087 | 0.0076 |
55 | 0.0048 | 0.0063 | 0.0056 | 0.0071 | 0.0081 | 0.0076 | 0.0049 | 0.0057 | 0.0053 | 0.0069 | 0.0078 | 0.0074 |
56 | 0.0102 | 0.0142 | 0.0123 | 0.0087 | 0.0106 | 0.0097 | 0.0095 | 0.0131 | 0.0115 | 0.0083 | 0.0097 | 0.0091 |
57 | 0.0084 | 0.0100 | 0.0092 | 0.0096 | 0.0115 | 0.0106 | 0.0079 | 0.0087 | 0.0084 | 0.0089 | 0.0101 | 0.0095 |
58 | 0.0102 | 0.0122 | 0.0112 | 0.0075 | 0.0110 | 0.0093 | 0.0096 | 0.0102 | 0.0099 | 0.0070 | 0.0092 | 0.0082 |
59 | 0.0043 | 0.0132 | 0.0088 | 0.0064 | 0.0123 | 0.0094 | 0.0040 | 0.0127 | 0.0087 | 0.0060 | 0.0114 | 0.0089 |
60 | 0.0085 | 0.0131 | 0.0109 | 0.0086 | 0.0143 | 0.0116 | 0.0081 | 0.0119 | 0.0102 | 0.0082 | 0.0137 | 0.0112 |
61 | 0.0116 | 0.0203 | 0.0162 | 0.0107 | 0.0181 | 0.0145 | 0.0115 | 0.0180 | 0.0151 | 0.0104 | 0.0161 | 0.0135 |
62 | 0.0161 | 0.0185 | 0.0174 | 0.0133 | 0.0194 | 0.0165 | 0.0150 | 0.0160 | 0.0156 | 0.0128 | 0.0166 | 0.0149 |
63 | 0.0156 | 0.0200 | 0.0180 | 0.0171 | 0.0206 | 0.0190 | 0.0145 | 0.0183 | 0.0167 | 0.0159 | 0.0186 | 0.0175 |
64 | 0.0180 | 0.0247 | 0.0216 | 0.0157 | 0.0208 | 0.0185 | 0.0167 | 0.0230 | 0.0203 | 0.0146 | 0.0197 | 0.0175 |
65 | 0.0160 | 0.0291 | 0.0231 | 0.0142 | 0.0262 | 0.0207 | 0.0158 | 0.0258 | 0.0214 | 0.0136 | 0.0239 | 0.0194 |
66 | 0.0278 | 0.0300 | 0.0290 | 0.0261 | 0.0291 | 0.0277 | 0.0263 | 0.0268 | 0.0265 | 0.0249 | 0.0258 | 0.0254 |
67 | 0.0290 | 0.0360 | 0.0328 | 0.0319 | 0.0300 | 0.0309 | 0.0276 | 0.0322 | 0.0302 | 0.0301 | 0.0266 | 0.0282 |
68 | 0.0368 | 0.0404 | 0.0387 | 0.0285 | 0.0405 | 0.0350 | 0.0352 | 0.0363 | 0.0359 | 0.0272 | 0.0368 | 0.0326 |
69 | 0.0294 | 0.0559 | 0.0433 | 0.0303 | 0.0519 | 0.0417 | 0.0283 | 0.0507 | 0.0407 | 0.0290 | 0.0474 | 0.0392 |
70 | 0.0442 | 0.0677 | 0.0565 | 0.0356 | 0.0576 | 0.0471 | 0.0427 | 0.0617 | 0.0533 | 0.0343 | 0.0531 | 0.0446 |
71 | 0.0394 | 0.0617 | 0.0512 | 0.0374 | 0.0568 | 0.0476 | 0.0383 | 0.0577 | 0.0493 | 0.0362 | 0.0527 | 0.0454 |
72 | 0.0529 | 0.0597 | 0.0564 | 0.0413 | 0.0560 | 0.0491 | 0.0515 | 0.0506 | 0.0510 | 0.0402 | 0.0498 | 0.0457 |
73 | 0.0437 | 0.0734 | 0.0593 | 0.0527 | 0.0680 | 0.0607 | 0.0428 | 0.0670 | 0.0566 | 0.0514 | 0.0609 | 0.0568 |
74 | 0.0589 | 0.0893 | 0.0748 | 0.0575 | 0.0874 | 0.0731 | 0.0600 | 0.0800 | 0.0715 | 0.0574 | 0.0802 | 0.0704 |
75 | 0.0751 | 0.0922 | 0.0837 | 0.0667 | 0.0936 | 0.0807 | 0.0738 | 0.0826 | 0.0786 | 0.0667 | 0.0882 | 0.0790 |
76 | 0.0707 | 0.1040 | 0.0866 | 0.0733 | 0.0982 | 0.0856 | 0.0716 | 0.1040 | 0.0889 | 0.0732 | 0.0912 | 0.0831 |
77 | 0.0600 | 0.1140 | 0.0850 | 0.0622 | 0.1099 | 0.0847 | 0.0614 | 0.0967 | 0.0797 | 0.0634 | 0.0974 | 0.0812 |
78 | 0.0764 | 0.1461 | 0.1071 | 0.0767 | 0.1264 | 0.0995 | 0.0781 | 0.1282 | 0.1029 | 0.0781 | 0.1113 | 0.0953 |
79 | 0.1308 | 0.1362 | 0.1331 | 0.1137 | 0.1232 | 0.1181 | 0.1291 | 0.1206 | 0.1250 | 0.1137 | 0.1080 | 0.1111 |
80 | 0.1371 | 0.1679 | 0.1501 | 0.1285 | 0.1483 | 0.1368 | 0.1352 | 0.1631 | 0.1484 | 0.1267 | 0.1437 | 0.1346 |
81 | 0.1423 | 0.2012 | 0.1667 | 0.1204 | 0.1572 | 0.1359 | 0.1408 | 0.2034 | 0.1696 | 0.1187 | 0.1551 | 0.1359 |
82 | 0.1546 | 0.1577 | 0.1559 | 0.1285 | 0.1518 | 0.1381 | 0.1527 | 0.1337 | 0.1440 | 0.1272 | 0.1359 | 0.1312 |
83 | 0.1121 | 0.2262 | 0.1571 | 0.1284 | 0.1710 | 0.1456 | 0.1101 | 0.2379 | 0.1661 | 0.1267 | 0.1763 | 0.1489 |
84 | 0.1375 | 0.1954 | 0.1591 | 0.1228 | 0.2109 | 0.1561 | 0.1414 | 0.2178 | 0.1723 | 0.1241 | 0.2222 | 0.1656 |
85 | 0.2008 | 0.2837 | 0.2316 | 0.1626 | 0.2201 | 0.1837 | 0.1959 | 0.3000 | 0.2370 | 0.1625 | 0.2169 | 0.1845 |
86 | 0.1818 | 0.1786 | 0.1806 | 0.1822 | 0.2052 | 0.1908 | 0.1771 | 0.1562 | 0.1688 | 0.1773 | 0.2004 | 0.1865 |
87 | 0.1772 | 0.2759 | 0.2122 | 0.1600 | 0.2165 | 0.1808 | 0.1739 | 0.2772 | 0.2137 | 0.1555 | 0.2061 | 0.1754 |
88 | 0.2113 | 0.3582 | 0.2584 | 0.1969 | 0.2358 | 0.2109 | 0.2238 | 0.3333 | 0.2624 | 0.2014 | 0.2235 | 0.2102 |
89 | 0.2051 | 0.2857 | 0.2289 | 0.2644 | 0.3497 | 0.2893 | 0.2051 | 0.2909 | 0.2326 | 0.2708 | 0.3542 | 0.2965 |
90 | 0.4045 | 0.3000 | 0.3721 | 0.2586 | 0.2943 | 0.2686 | 0.4045 | 0.3111 | 0.3731 | 0.2586 | 0.3005 | 0.2716 |
91 | 0.3607 | 0.4286 | 0.3820 | 0.2745 | 0.3436 | 0.2975 | 0.3607 | 0.3529 | 0.3579 | 0.2745 | 0.3269 | 0.2949 |
92 | 0.4211 | 0.6667 | 0.4906 | 0.3563 | 0.3917 | 0.3701 | 0.4211 | 0.5714 | 0.4746 | 0.3563 | 0.3481 | 0.3532 |
93 | 0.4000 | 0.1818 | 0.3333 | 0.2769 | 0.3250 | 0.2897 | 0.4000 | 0.1250 | 0.2927 | 0.2769 | 0.2909 | 0.2832 |
94 | 0.4000 | 0.5714 | 0.4444 | 0.2348 | 0.2000 | 0.2146 | 0.4000 | 0.8000 | 0.5333 | 0.2348 | 0.2769 | 0.2470 |
Udvandringer
Udvandringshyppigheder efter køn, : mænd, født i Grønland
Tabel 6: Udvandringshyppigheder beregnet som a- og b-grupper. | ||||||
---|---|---|---|---|---|---|
2020 - 2024 | ||||||
I alt | ||||||
alder | Kvinder | Mænd | I alt | |||
A | B | A | B | A | B | |
0 | 0.0134 | 0.0970 | 0.0157 | 0.0958 | 0.0145 | 0.0964 |
1 | 0.0321 | 0.0314 | 0.0363 | 0.0335 | 0.0342 | 0.0325 |
2 | 0.0312 | 0.0275 | 0.0286 | 0.0314 | 0.0299 | 0.0294 |
3 | 0.0271 | 0.0279 | 0.0291 | 0.0268 | 0.0281 | 0.0273 |
4 | 0.0271 | 0.0287 | 0.0225 | 0.0224 | 0.0247 | 0.0255 |
5 | 0.0246 | 0.0249 | 0.0148 | 0.0232 | 0.0195 | 0.0240 |
6 | 0.0236 | 0.0241 | 0.0297 | 0.0221 | 0.0268 | 0.0230 |
7 | 0.0230 | 0.0220 | 0.0220 | 0.0220 | 0.0225 | 0.0220 |
8 | 0.0253 | 0.0227 | 0.0244 | 0.0233 | 0.0249 | 0.0231 |
9 | 0.0193 | 0.0229 | 0.0193 | 0.0199 | 0.0193 | 0.0213 |
10 | 0.0203 | 0.0204 | 0.0203 | 0.0199 | 0.0203 | 0.0201 |
11 | 0.0258 | 0.0212 | 0.0198 | 0.0206 | 0.0227 | 0.0209 |
12 | 0.0247 | 0.0234 | 0.0157 | 0.0170 | 0.0201 | 0.0201 |
13 | 0.0276 | 0.0271 | 0.0211 | 0.0189 | 0.0242 | 0.0228 |
14 | 0.0382 | 0.0373 | 0.0311 | 0.0309 | 0.0345 | 0.0340 |
15 | 0.1827 | 0.1642 | 0.1678 | 0.1428 | 0.1750 | 0.1531 |
16 | 0.1653 | 0.1836 | 0.1349 | 0.1574 | 0.1497 | 0.1700 |
17 | 0.0519 | 0.0599 | 0.0408 | 0.0476 | 0.0463 | 0.0536 |
18 | 0.0347 | 0.0396 | 0.0382 | 0.0322 | 0.0365 | 0.0358 |
19 | 0.0573 | 0.0556 | 0.0373 | 0.0403 | 0.0472 | 0.0478 |
20 | 0.0900 | 0.0842 | 0.0585 | 0.0561 | 0.0741 | 0.0699 |
21 | 0.0760 | 0.0866 | 0.0685 | 0.0758 | 0.0722 | 0.0812 |
22 | 0.0641 | 0.0677 | 0.0750 | 0.0716 | 0.0696 | 0.0697 |
23 | 0.0611 | 0.0584 | 0.0513 | 0.0613 | 0.0561 | 0.0598 |
24 | 0.0577 | 0.0606 | 0.0709 | 0.0657 | 0.0644 | 0.0631 |
25 | 0.0598 | 0.0663 | 0.0644 | 0.0664 | 0.0621 | 0.0663 |
26 | 0.0738 | 0.0682 | 0.0602 | 0.0638 | 0.0668 | 0.0660 |
27 | 0.0597 | 0.0657 | 0.0726 | 0.0673 | 0.0663 | 0.0665 |
28 | 0.0695 | 0.0649 | 0.0549 | 0.0652 | 0.0621 | 0.0650 |
29 | 0.0668 | 0.0682 | 0.0634 | 0.0598 | 0.0651 | 0.0639 |
30 | 0.0656 | 0.0694 | 0.0540 | 0.0591 | 0.0597 | 0.0641 |
31 | 0.0660 | 0.0644 | 0.0632 | 0.0617 | 0.0646 | 0.0630 |
32 | 0.0530 | 0.0498 | 0.0593 | 0.0566 | 0.0562 | 0.0533 |
33 | 0.0379 | 0.0424 | 0.0501 | 0.0487 | 0.0442 | 0.0456 |
34 | 0.0522 | 0.0466 | 0.0550 | 0.0472 | 0.0537 | 0.0469 |
35 | 0.0484 | 0.0441 | 0.0423 | 0.0415 | 0.0453 | 0.0428 |
36 | 0.0337 | 0.0353 | 0.0390 | 0.0470 | 0.0365 | 0.0414 |
37 | 0.0330 | 0.0338 | 0.0498 | 0.0476 | 0.0419 | 0.0410 |
38 | 0.0406 | 0.0347 | 0.0456 | 0.0395 | 0.0432 | 0.0372 |
39 | 0.0322 | 0.0329 | 0.0405 | 0.0412 | 0.0366 | 0.0373 |
40 | 0.0293 | 0.0313 | 0.0419 | 0.0409 | 0.0360 | 0.0364 |
41 | 0.0358 | 0.0317 | 0.0428 | 0.0408 | 0.0396 | 0.0366 |
42 | 0.0282 | 0.0273 | 0.0421 | 0.0426 | 0.0357 | 0.0355 |
43 | 0.0250 | 0.0227 | 0.0475 | 0.0449 | 0.0373 | 0.0347 |
44 | 0.0308 | 0.0266 | 0.0528 | 0.0457 | 0.0428 | 0.0371 |
45 | 0.0260 | 0.0314 | 0.0399 | 0.0439 | 0.0337 | 0.0382 |
46 | 0.0406 | 0.0351 | 0.0420 | 0.0411 | 0.0414 | 0.0384 |
47 | 0.0305 | 0.0318 | 0.0380 | 0.0412 | 0.0346 | 0.0371 |
48 | 0.0281 | 0.0274 | 0.0432 | 0.0399 | 0.0365 | 0.0344 |
49 | 0.0286 | 0.0320 | 0.0375 | 0.0383 | 0.0335 | 0.0355 |
50 | 0.0276 | 0.0294 | 0.0414 | 0.0431 | 0.0351 | 0.0369 |
51 | 0.0202 | 0.0232 | 0.0360 | 0.0413 | 0.0287 | 0.0331 |
52 | 0.0250 | 0.0260 | 0.0350 | 0.0368 | 0.0304 | 0.0318 |
53 | 0.0236 | 0.0289 | 0.0271 | 0.0344 | 0.0255 | 0.0319 |
54 | 0.0287 | 0.0277 | 0.0343 | 0.0342 | 0.0317 | 0.0312 |
55 | 0.0267 | 0.0270 | 0.0348 | 0.0345 | 0.0311 | 0.0311 |
56 | 0.0281 | 0.0290 | 0.0289 | 0.0296 | 0.0286 | 0.0293 |
57 | 0.0298 | 0.0293 | 0.0282 | 0.0295 | 0.0289 | 0.0294 |
58 | 0.0258 | 0.0279 | 0.0311 | 0.0290 | 0.0287 | 0.0285 |
59 | 0.0256 | 0.0255 | 0.0241 | 0.0264 | 0.0248 | 0.0260 |
60 | 0.0274 | 0.0236 | 0.0344 | 0.0300 | 0.0312 | 0.0271 |
61 | 0.0247 | 0.0239 | 0.0295 | 0.0347 | 0.0274 | 0.0298 |
62 | 0.0287 | 0.0256 | 0.0428 | 0.0349 | 0.0366 | 0.0307 |
63 | 0.0317 | 0.0280 | 0.0329 | 0.0321 | 0.0324 | 0.0303 |
64 | 0.0288 | 0.0291 | 0.0380 | 0.0343 | 0.0340 | 0.0321 |
65 | 0.0300 | 0.0277 | 0.0348 | 0.0330 | 0.0327 | 0.0307 |
66 | 0.0450 | 0.0374 | 0.0347 | 0.0309 | 0.0392 | 0.0337 |
67 | 0.0298 | 0.0323 | 0.0306 | 0.0326 | 0.0302 | 0.0325 |
68 | 0.0182 | 0.0168 | 0.0310 | 0.0276 | 0.0254 | 0.0229 |
69 | 0.0234 | 0.0168 | 0.0259 | 0.0238 | 0.0248 | 0.0207 |
70 | 0.0114 | 0.0157 | 0.0202 | 0.0237 | 0.0163 | 0.0201 |
71 | 0.0128 | 0.0122 | 0.0209 | 0.0159 | 0.0173 | 0.0142 |
72 | 0.0120 | 0.0081 | 0.0160 | 0.0122 | 0.0143 | 0.0104 |
73 | 0.0058 | 0.0089 | 0.0116 | 0.0094 | 0.0092 | 0.0092 |
74 | 0.0107 | 0.0099 | 0.0064 | 0.0112 | 0.0082 | 0.0107 |
75 | 0.0108 | 0.0078 | 0.0158 | 0.0115 | 0.0136 | 0.0099 |
76 | 0.0067 | 0.0056 | 0.0098 | 0.0076 | 0.0084 | 0.0066 |
77 | 0.0001 | 0.0034 | 0.0088 | 0.0092 | 0.0046 | 0.0065 |
78 | 0.0025 | 0.0025 | 0.0205 | 0.0145 | 0.0114 | 0.0086 |
79 | 0.0057 | 0.0027 | 0.0155 | 0.0202 | 0.0104 | 0.0114 |
80 | 0.0001 | 0.0014 | 0.0194 | 0.0127 | 0.0092 | 0.0068 |
81 | 0.0124 | 0.0061 | 0.0001 | 0.0038 | 0.0067 | 0.0051 |
82 | 0.0001 | 0.0085 | 0.0058 | 0.0028 | 0.0027 | 0.0059 |
83 | 0.0058 | 0.0024 | 0.0001 | 0.0028 | 0.0033 | 0.0026 |
84 | 0.0001 | 0.0001 | 0.0001 | 0.0049 | 0.0001 | 0.0020 |
85 | 0.0001 | 0.0001 | 0.0125 | 0.0049 | 0.0049 | 0.0020 |
86 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 |
87 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 |
88 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 |
89 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 |
90 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 |
91 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 |
92 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 |
93 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 |
94 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 |
Statistikbank tabeller
Endelig skal tabellerne suppleres med metadata for at kunne præsenteres i Statistikbanken.
Dette gøres med Grønlands Statistiks r-pakke ‘pxmake’.
# source("pxmake_all.R")
# Convert the dataframe px_data_lt a px-file, ready to use
<- "20250331 09:00" # release date
lastupdated <- "20260308 09:00" # next release date
nextupdate
<- px_data_lt %>%
px_data_lt arrange(time) %>%
mutate(time=as.character(time))
# get metadata into px-object (z), from previous px-file: BEXLTALL.px
<- px(file.path(previousPath,"BEXLTALL.px")) %>%
z px_data(px_data_lt) %>%
# + update date for : last updated and next update
px_last_updated(lastupdated) %>%
px_next_update(nextupdate) %>%
# + update description and title
px_description(data.frame(language = c("en", "da", "kl"),
value = c(paste0("Life Tables ",(CONST_start_year+5)," - ",
" <em>[BEELTALL]</em>"),
CONST_end_event_year,paste0("Overlevelsestavler ",(CONST_start_year+5),
" - ",CONST_end_event_year," <em>[BEDLTALL]</em>"),
paste0((CONST_start_year+5)," - ",CONST_end_event_year,
", Agguaqatigiissillugu ukioqqortussuseq <em>[BENLTALL]</em>")))) %>%
px_title(data.frame(language = c("en", "da", "kl"),
value = c("Life Tables ",
"Overlevelsestavler ",
"Agguaqatigiissillugu ukioqqortussuseq")))
# %>%
# px_infofile(tribble(~language, ~value,
# 'en', 'metode til beregning af dødelighed',
# 'da', 'metode til beregning af dødelighed',
# 'kl', 'metode til beregning af dødelighed'))
# save px-object to file, overwriting if it already exists
px_save(z, file.path(resultsPath,"BEXLTALL.px"))
#px_save(z, file.path(resultsPath,"BEXLTALL.xlsx"))
source("pxmake_reg.R")
source("pxmake_out.R")